A new Unsupervised Clustering-based Feature Extraction Method

نویسندگان

  • Sabra El Ferchichi
  • Salah Zidi
  • Kaouther Laabidi
چکیده

In manipulating data such as in supervised or unsupervised learning, we need to extract new features from the original features for the purpose of reducing the dimension of feature space and achieving better performance. In this paper, we investigate a novel schema for unsupervised feature extraction for classification problems. We based our method on clustering to achieve feature extraction. A new similarity measure based on trend analysis is devised to identify redundant information in the data. Clustering is then performed on the feature space. Once groups of similar features are formed, linear transformation is realized to extract a new set of features. The simulation results on classification problems for experimental data sets from UCI machine learning repository and face recognition problem show that the proposed method is effective in almost cases when compared to conventional unsupervised methods like PCA and ICA. General Terms Pattern Recognition, Machine Learning, Feature Extraction, and Data mining.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Extraction and 3D Segmentation of Tumors-Based Unsupervised Clustering Techniques in Medical Images

Introduction The diagnosis and separation of cancerous tumors in medical images require accuracy, experience, and time, and it has always posed itself as a major challenge to the radiologists and physicians. Materials and Methods We Received 290 medical images composed of 120 mammographic images, LJPEG format, scanned in gray-scale with 50 microns size, 110 MRI images including of T1-Wighted, T...

متن کامل

A New Feature Extraction Method Based on Clustering for Face Recognition

When solving a pattern classification problem, it is common to apply a feature extraction method as a pre-processing step, not only to reduce the computation complexity but also to obtain better classification performance by reducing the amount of irrelevant and redundant information in the data. In this study, we investigate a novel schema for linear feature extraction in classification proble...

متن کامل

Unsupervised Image Steganalysis Method Using Self-Learning Ensemble Discriminant Clustering

Image steganography is a technique of embedding secret message into a digital image to securely send the information. In contrast, steganalysis focuses on detecting the presence of secret messages hidden by steganography. The modern approach in steganalysis is based on supervised learning where the training set must include the steganographic and natural image features. But if a new method of s...

متن کامل

BotOnus: an online unsupervised method for Botnet detection

Botnets are recognized as one of the most dangerous threats to the Internet infrastructure. They are used for malicious activities such as launching distributed denial of service attacks, sending spam, and leaking personal information. Existing botnet detection methods produce a number of good ideas, but they are far from complete yet, since most of them cannot detect botnets in an early stage ...

متن کامل

High-Dimensional Unsupervised Active Learning Method

In this work, a hierarchical ensemble of projected clustering algorithm for high-dimensional data is proposed. The basic concept of the algorithm is based on the active learning method (ALM) which is a fuzzy learning scheme, inspired by some behavioral features of human brain functionality. High-dimensional unsupervised active learning method (HUALM) is a clustering algorithm which blurs the da...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012